Introduction	Materials and Methods	Results
0000	00	00000

Exploring Multi-conformational Modeling and Flexibility of Molecular Recognition Features In Improving Drug Docking

Andrew Li Mentor: Dr. Gil Alterovitz

May 17, 2015

Introduction	
0000	

 Proteins are biological structures, made of chains of amino acids.

Introduction	
0000	

- Proteins are biological structures, made of chains of amino acids.
- ► (Ordered) proteins generally have four levels of structure.

- Proteins are biological structures, made of chains of amino acids.
- ► (Ordered) proteins generally have four levels of structure.
- ► A *intrinsically disordered protein* (IDP) is a protein containing regions of *disorder*.

- Proteins are biological structures, made of chains of amino acids.
- ► (Ordered) proteins generally have four levels of structure.
- ► A *intrinsically disordered protein* (IDP) is a protein containing regions of *disorder*.
- They lack a fixed tertiary, or 3-D structure.

- Proteins are biological structures, made of chains of amino acids.
- ► (Ordered) proteins generally have four levels of structure.
- ► A *intrinsically disordered protein* (IDP) is a protein containing regions of *disorder*.
- They lack a fixed tertiary, or 3-D structure.
- IDPs are potential drug targets and are now closely studied.

EXAMPLE PICTURE

The protein disorder continuum

Introduction	Materials ar
0000	00

MOLECULAR RECOGNITION FEATURES (MORFS)

 MoRFs are small, interaction-prone segments of disorder within larger proteins.

Materials and
00

MOLECULAR RECOGNITION FEATURES (MORFS)

 MoRFs are small, interaction-prone segments of disorder within larger proteins.

Methods

 Their presence indicates the ability for recognition and binding.

Materials	and	Methods
00		

MOLECULAR RECOGNITION FEATURES (MORFS)

- MoRFs are small, interaction-prone segments of disorder within larger proteins.
- Their presence indicates the ability for recognition and binding.
- ► They are usually defined to be between 10-70 residues long.

MOTIVATING QUESTIONS

How can we utilize the flexible nature of IDPs in improving docking ability?

MOTIVATING QUESTIONS

- How can we utilize the flexible nature of IDPs in improving docking ability?
- What are different paradigms within which we can analyze binding affinities of flexible regions?

MOTIVATING QUESTIONS

- How can we utilize the flexible nature of IDPs in improving docking ability?
- What are different paradigms within which we can analyze binding affinities of flexible regions?
- How can these results be applied to finding new drugs for diseases such as cancer?

Materials and	Methods
•0	

DATA COLLECTION AND PROCESSING

 A pipeline was written to fully automate the process of drug-protein matching.

DATA COLLECTION AND PROCESSING

- A pipeline was written to fully automate the process of drug-protein matching.
- From the Protein Data Bank, proteins were gathered related to major pathogens.

DATA COLLECTION AND PROCESSING

- A pipeline was written to fully automate the process of drug-protein matching.
- From the Protein Data Bank, proteins were gathered related to major pathogens.
- The MoRF segments were isolated from the PDB files, and ran through the pipeline to find drugs that might bind with the MoRFs.

Introduction 0000

SIMULATION OF FLEXIBILITY

 TraDES was used to generate 200 conformations of each protein analyzed.

SIMULATION OF FLEXIBILITY

- TraDES was used to generate 200 conformations of each protein analyzed.
- These proteins were re-screened through the pipeline.

SIMULATION OF FLEXIBILITY

- TraDES was used to generate 200 conformations of each protein analyzed.
- These proteins were re-screened through the pipeline.
- (two pictures of different conformations side by side)

DRUG RESULTS

Based on the process used, six drugs have been found to address *Pseudomas Aeruginosa* (which affects airways and can cause blood infections)

PubchemID	Prob-SSB
46507215	0.926
46506020	0.929
46508185	0.926
45406770	0.926
45406528	0.926
46507414	0.928

COMPARISON OF METHODS

 Using a matched pairs test between all MoRFs analyzed and the top score from their conformations, I obtain a p-value of 0.02.

COMPARISON OF METHODS

- Using a matched pairs test between all MoRFs analyzed and the top score from their conformations, I obtain a p-value of 0.02.
- At the *α* = 0.05 level, this is significant, and shows an improvement in docking score.

Alternative Method of Flexible Docking

 A program was written in order to dock multiple pieces of the MoRF with the drug individually.

ALTERNATIVE METHOD OF FLEXIBLE DOCKING

- ► A program was written in order to dock multiple pieces of the MoRF with the drug individually.
- ► This is possible because of the difference in size between the MoRF (or protein) and the drug.

ANALYSIS OF METHOD RUNTIME

- All bonds which can rotate are kept rotatable, and if the sections are divided correctly only one will bind to the drug.
- Further work must be done in automating this process.

CONCLUSION

The property of flexibility for MoRFs was utilized to improve docking score by generating a large number of conformations, and binding them with the appropriate drugs. Additionally, a new method of docking with flexible proteins was developed to reduce docking runtime significantly.

ACKNOWLEDGEMENTS

I would like to thank the following people for their essential role in allowing this project to succeed:

- ► Dr. Gil Alterovitz
- Anvita Gupta
- ► MIT PRIMES
- ► Parents!